

STEM TERMINATION GENETICS IN PIGEONPEA VARIANTS (CAJANUS CAJAN (L.) MILLSP)

D. R. SAPKAL*, A. N. PATIL, V. R. SAPKAL AND M. P. MESHRAM

Pulses Research Unit, Dr. P.D.K.V., P.O. Krishi Nagar Akola - 444 104 (MS) INDIA e-mail: deepaksapkal7878@rediffmail.com

1	
KEYWORDS	ABSTRACT
Genetic inheritance	In pigeonpea, there are three distinct growth habits of plants types which differ in the morphology of the
Stem termination	inflorescence, that are determinate (DT), semideterminte (SDT) and indeterminate (IDT). Growth habit is useful
Dominant epistatic	trait because of short stature of the determinate plant types makes them amenable to efficient crop management
interaction	practices, such as foliar insecticide application and mechanized crop production. Indeterminate plants, on the
Growth habit	other hand, grow taller; hence, efficient management and mechanization become difficult. But indeterminate
	genotypes yielded more than determinate genotype in semiarid environment. Indeterminate plants produce
	flowers throughout the growing season whenever sufficient moisture is available. This is not possible in case of
	determinate genotypes. While semideterminate growth habit was rarely observed in pigeonpea germplasm.
	Inheritance studies of growth habit, indeterminate Vs determinate and indeterminate Vs semideterminate growth
Received on :	habit was studied with seven populations (parents, F_1 , reciprocal, F_2 and both back cross) of eight and two crosses
05.07.2015	with respective characters. Data analysis of segregating populations (r_s and test crosses) was carried out with the
	nelp of chi-square test. Present studies snowed that indeterminate growth habit was completely dominant over
	determinate plant type and indeterminate trait was governed by single gene as an r_2 and their test cross progenies
	segregated and were interview book of a state of the transfer of the second sec
Accepted on :	semideterminate growth habit showed dominant epistatic fails for two foct of 12.3.1, 101 3D 101 million population. This result confirmed with test cross and back cross with dominant parents. From present study of
21.09.2015	IDT Vs SDT it was concluded that indeterminate growth babit was governed by Dt /dt s and semideterminate as
	dt/Dt The presence of Dt allele completely masked the expression of Dt sallele. The presences of the recessive
	allele of these genes in homozygous state (dt dt, dt s dt s) result in determinate growth habits. While no
*Corresponding	reciprocal differences were observed in inheritance pattern of IDT vs DT and IDT vs SDT, indicating no maternal
author	effect to govern the traits.
autior	

INTRODUCTION

In pigeonpea, there are three distinct growth habits of plants types which differ in the morphology of the inflorescence, that are determinate, semideterminte and indeterminate. In plants with determinate growth habit, the inflorescence is short, the apical buds develop into the flower and the sequence of inflorescence production is basipetal such plants are compact and have moderate height and their flowering duration is comparatively short (Sheldrake, 1984). In the semideterminate plants, the inflorescence in plant after initiation of reproductive growth, grow as in indeterminate plants, resulting in elongated flowering or fruiting branches terminating with a flower as in the plants with determinate growth habit. In the indeterminate plants, the flowers are scattered. New vegetative buds and leaves are produced even after initiation of reproductive growth, plants grow tall and flower duration is comparatively long.

Among the many traits, growth habit has been found to be useful markers. For example short stature of the determinate plant types makes them amenable to efficient crop management practices, such as foliar insecticide application and mechanized crop production. Indeterminate plants, on the other hand, grow taller; hence, efficient management and mechanization become difficult. Most of the traditional medium (maturing in 150-200 days) and long-duration (maturing in >200 days) pigeonpea cultivars are tall indeterminates, resulting in low productivity, mainly because of inefficient pest (mainly *Helicoverpa armigera* pod borer) control (Gupta & Kappor 1991). Some benefit of indeterminate plant type reported by Quisenberry and Roark in 1976. They found that indeterminate genotypes yielded more than determinate genotype in semiarid environment. Indeterminate plants produce flowers throughout the growing season whenever sufficient moisture is available. This is not possible in case of determinate genotypes. While semideterminate growth habit was rarely observed in pigeonpea germplasm.

Information on the genetics on stem termination in pigeonpea genotypes is limited and contradictory (Waldia and Singh 1987). Very few studies have been reported on inheritance pattern of indeterminate or determinate growth habit in pigeonpea. To our knowledge only one study on semideterminate growth habit was carried out by Gupta and Kapoor in 1991. Inheritance of semideterminate growth habit was first time reported by using parent gigas leaf variant. This paper gives an additional data on the inheritance of indeterminate, semideterminate and determinate growth habit in pigeonpea.

MATERIALS AND METHODS

Five pigeonpea variants used as male parents i.e four height variants (Dwarf 30, Dwarf 45 white seed, Dwarf 45 brown seed and Dwarf 60) were determinate growth habit and one leaf variant (Gigas leaf variant) having semideterminate growth habit. Two commercially released varieties of pigeonpea i.e AKT-8811 and TAT-10 were used as female lines both having indeterminate growth habit. All male crossed with each female in kharif 2009. Five populations F_1s , reciprocals, F_2s , back crosses and test crosses were developed from respective crosses. All these populations were grown on 12th July 2011 at spacing 60 × 20 cm sufficiently for inheritance studies. At flowering stage the number of determinate, semideterminate and indeterminate plants of each population was recorded. Chi-square analysis was used to test the significance of

deviation from expected segregation.

RESULTS AND DISCUSSION

All seven parents used in present study bred true for growth habit. All parents not showed segregation after selfing in future generation, suggesting that all parents used for present studies are genetically pure.

Indeterminate × Determinate

All the F_1 s and reciprocals plants in the crosses involving IDT \times DT parents and BC₁ F_1 plants with indeterminate parents were of IDT type for all four crosses, indicating the dominance of gene or genes governing IDT growth habit over those for DT growth habit. The F_2 progeny of each cross showed a 3:1

	1 0 1				1 1 1 2 1 10 2 2		· ·	• •
Ishla		tor indotorming	to and dotorm	insta arouth	habit in dittoront	nonulation of	tnigoonnoo	Variante
1 400		пог иноетегница	те апо оетегни	IIIAI E VIOWIII	наюн штоппетен	000001a100000		variants
	c ii segiegation				mashe me anner en e	population of	. pigeonpea	
	0 0			0				

Total Observed Expected IDT DT IDT DT	
IDT DT DT 1) AKT-8811 × Dwarf 30 DT DT	
1) AKT-8811 × Dwarf 30	
F, & Reciprocal 30 30 - All IDT	
F ₂ 580 453 127 435 145 3:1 2.81 0.0	19
F, × Dwarf 30 99 54 45 49.5 49.5 1:1 0.61 0.4	2
F, × AKT-8811 98 98 - All IDT	
2) TAT-10 \times Dwarf 30	
F. & Reciprocal 30 30 - All IDT	
F. 515 390 125 386.25 128.75 3:1 0.10 0.7	5
$F_{2}^{2} \times Dwarf 30$ 90 46 44 45 45 1:1 0.01 0.9	2
F × TAT-10 90 90 - All IDT	
3) AKT-8811 × Dwarf 45 white seed	
F & Reciprocal 30 30 - All IDT	
F 343 254 89 257 25 85 75 3.1 0.11 0.7	4
F x Dwarf 45 white seed 48 25 23 24 24 1-1 0.02 08	8
$F \times AKT_{-8811}$ 97 97 - All IDT	.0
(1) TAT-10 × Dwarf 45 white seed	
= 1000000000000000000000000000000000000	
F 281 216 65 210 75 70.25 2-1 0.42 0.5	1
Γ_2 201 210 03 210.75 70.25 3.1 0.42 0. E x Dwarf 45 white cod 46 26 20 23 23 1.1 0.51 0.4	7
$\Gamma_1 \times D$ with a second 40 20 20 25 25 1.1 0.51 0	
$I_1 \times IAI = 10$ $O_2 = O_2 =$	
5) ANI-0011 X Dwall 45 blown seeu	
$r_1 \propto \text{Recipiocal}$ 50 50 - All DI	.0
$F_2 = 294 - 215 - 79 - 220.5 - 73.5 - 3.11 - 0.45 - 0.5 - 0.5 - 0.5 - 0.5 - 0.11 - 0.45 - 0.5 $	1
$F_1 \times DWah 45 \text{ brown seed}$ 65 36 27 32.5 32.5 1:1 1.53 0.2	1
$r_1 \times AKI-0011$ of of - AILDT	
6) IAI-IU × DWart 45 brown seed	
r, & Keciprocal 30 30 - All IDI	
$F_2 = 268 + 198 + 70 + 201 + 67 + 311 + 0.12 + 0.7$	2
F, x Dwart 45 brown seed 54 29 25 27 27 1:1 0.16	
$F_1 \times IAI - 10$ 72 72 - All IDI	
7) AKI-8811 × Dwart 60	
F ₁ & Reciprocal 30 30 - All IDI	
F_2 421 323 98 315.75 105.25 3:1 0.57 0.4	4
$F_1 \times Dwart 60$ 88 48 40 44 44 1:1 0.55 0.4	-5
F ₁ × AKT-8811 78 78 - All IDT	
8) TAT-10 \times Dwarf 60	
F1 & Reciprocal 30 30 - All IDT -	
F_2 265 195 70 198.5 66.25 3:1 0.21 0.6	4
F1 × Dwarf 60 54 29 25 27 27 1:1 0.16 0.6	8
F ₁ × TAT-10 74 74 - All IDT	
Pooled (IDT × DT crosses)	
F ₁ & Reciprocal 240 All IDT	
F ₂ 2967 2244 723 2225.25 741.75 3:1 0.59 0.4	4
F ₁ × DT (Parent) 544 295 249 272 272 1:1 3.72 0.0	53
$F_1 \times IDT$ (Parent) 675 675 - All IDT	

Generation & Cross	Number of plants							Ratio	X^2	Р
	Total Observed		Expected							
		IDT	SDT	DT	IDT	SDT	DT			
1) AKT-8811 $ imes$ Gigas leaf variant										
F ₁ & Reciprocal	30	30	-	-	All IDT	-	-	-	-	-
F ₂	615	459	105	51	416.25	115.32	38.43	12:3:1	5.03	0.08
$F_1 \times Gigas$ leaf variant	135	77	58	-	67.50	67.50	-	1:1	2.40	0.12
F ₁ × AKT-8811	75	75	-	-	All IDT	-	-	-	-	-
2) TAT-10 \times Gigas leaf variant										
F ₁ & Reciprocal	30	30	-	-	All IDT	-	-	-	-	-
F ₂	483	363	85	35	362.5	90.56	30.18	12:3:1	1.11	0.57
$F_1 \times Gigas$ leaf variant	113	61	52	-	56.5	56.5	-	1:1	0.56	0.45
$F_1 \times TAT-10$	73	73	-	-	All IDT	-	-	-	-	-
Pooled (IDT \times SDT crosses)										
F ₁ & Reciprocal	60	60	-	-	All IDT	-	-	-	-	-
F ₂	1098	8202	190	86	823.5	205.87	68.62	12:3:1	5.62	0.06
$F_1 \times SDT$ (Parent)	248	138	110	-	124	124	-	1:1	2.93	0.08
$F_1 \times IDT$ (Parent)	148	148	-	-	All IDT	-	-	-	-	-

Table 2: Segregation for indeterminate and semideterminate growth habit in different population of pigeonpea variants

segregation ratio of IDT and DT types. The same segregation ratio was found in the pooled data of these four crosses (heterogeneity X² was non significant), indicating that the indeterminate character is controlled by single dominant gene. Test cross progenies of all four crosses segregated as 1:1 (IDT/ DT) ratio. Pooled analysis of all test cross progenies showed same results and back cross with dominant parent produced only IDT plants. The pooled data also showed same segregation as with individual back crosses, confirming the control of IDT character by a single dominant gene (Table 1). These results are in conformity with those already reported by, Reddy and Rao (1974) the inheritance of indeterminate and determinate types in Cajanus revealed that the determinate type was recessive, with a single factor difference. Gupta and Kapoor (1991) studied inheritance of DT and IDT growth habits in short-duration pigeonpea in F₁, F₂, and BC₁F₁ generations of 15 crosses involving six parents. The segregation pattern in the crosses involving IDT and DT parent indicates that, IDT growth habit is governed by a single dominant allele.

Indeterminate × Semideterminate

AKT-8811 x Gigas leaf variants

In the present cross, the female parent AKT-8811 had indeterminate growth habit, and male parent, Gigas leaf variant had semideterminate growth habit. All plants in F₁, its reciprocal and back cross with indeterminate parent generations were observed as indeterminate growth habit indicating dominance of indeterminate growth habit over semideterminate and no cytoplasmic gene effect to govern the traits growth habit.Out of total 615 plants were observed in F, population, 459 plants were found to be indeterminate, 105 plants were semideterminate while 51 plants were determinate. Chi-square test (5.03) of F₂ population gave a well fit to a dominant epistatic ratio for two loci of 12:3:1, indeterminate/ semideterminate/ determinate. This indicated that semideterminate and indeterminate growth habit was governed by two non-allelic genes with dominant epistatic action.135 test cross progenies were studied and they segregated in 77 indeterminate and 58 semideterminate. The chi-square test (2.40) showed well fit to 1:1 ratio (Table 2). These result confirmed the segregation pattern in F_2 population (Table 2).

TAT-10 x Gigas leaf variants

In this cross female parent (TAT-10) had indeterminate growth habit and male parent (Gigas leaf variant) had determinate growth habit. Their F1, reciprocals and back cross with dominant parent's generation produces all indeterminate plant type. It showed that, indeterminate growth habit was dominant over semideterminate growth habit and governed by nuclear gene action. In F_2 population, 363 indeterminate, 85 determinate and 35 semideterminate plants were observed. Chi-square test (0.57) of F_2 population gave a well fit to a dominant epistatic ratio for two loci of 12:3:1. Total 113 test cross progenies were studied and they segregated 61 indeterminate and 52 semideterminate plants. The chi- square test (0.45) showed well fit to 1:1 ratio (Table 2). These result confirmed the segregation pattern in F_2 population (Table 2).

Pooled analysis of both crosses

Pooled analysis of both crosses (AKT-8811 x Gigas leaf variants and TAT-10 x Gigas leaf variants) gave same type of inheritance pattern, which was observed individualy in both crosses. Pooled analysis again confirmed the results of dominant episttic interaction for semideterminate growth habit (Table 2).

From present study it was concluded that, growth habit was governed by two epistatic genes in mention above crosses. This indeterminate condition designated as Dt_1/dt_2s and semideterminate as dt_1/Dt_{2s} . The presence of Dt_1 allele completely masked the expression of Dt_2s allele. The presences of the recessive allele of these genes in homozygous state (dt_1 , dt_2s , dt_2s) result in determinate growth habits.

Present results are in agreement with the findings of Gupta and Kapoor (1991) in pigeonpea crop. They found that, F_2 population of the cross between indeterminate and semideterminate parents segregated in the ratio of 12 indeterminate: 3 semideterminate: 1 determinate, suggesting the expression of the semideterminate allele (Dt₂) masked by the presence of indeterminate allele (Dt₁) and that the homozygous recessive genotype for both genes (dt₁ dt₂, dt₂) has the determinate phenotype. The results obtained in BC₁F₁ with both parents also supported the F₂ data. Similar finding also reported in other crops by Bernard (1972), he observed digenic inheritance of determinate, indeterminate and semideterminate growth habit in soybean crop. Yonatan Elkind (1991) studied inheritance of growth habit in tomato, they made the cross between semideterminate and indeterminate types and the results indicated control by two genes, sp and sdt, with the sp + indeterminate type epistatic over semideterminate. The goodness of-fit to this model was 70% and 82% for F_a and backcross generations, respectively.

REFERENCES

Bernard, R. L. 1972. Two genes affecting stem termination in soybean. *Crop Sci.* 12: 235-239.

Gupta, S. C. and Kapoor, R. K. 1991. Inheritance of growth habit in

pigeonpea. Crop. Sci. 31: 1456-1459.

Quisenberry, J. E and Roark, B. 1976. Influence of indeterminate growth habit on yield and irrigation water-use-efficience in upland cotton. *Crop science*.**16:** 762-765.

Reddy Pankaja and Rao, N. G. P. 1974. Inheritance and relation with some yield components of plant and flowering habit in *Cajanus*. Indian *J. Genet. PI. Breed.* 34(1): 94-99.

Sheldrake, A. R. 1984. Pigeonpea. In the physiology of tropical field crops. P.R. Goldsworthy and N.M Fisher (ed.) *J. wiley and Sons, New York*.

Waldia, R. S. and Singh, V. P. 1987. Inheritance of stem termination in pigeon pea (*Cajanus cajan (L.) Mill sp.). Euphytica.* **36(2):** 525-527.

Yonatan Elkind, Arie Gurnick and Nachum, K. 1991. Genetics of semideterminate growth habit in tomato. HORTSCIENCE. 26(8): 1074-1075.